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 Satellite Laser Ranging
(GNSS, Geodesy Satellites, Debris …)  

 Lunar Laser Ranging 
(Moon Reflectors + LRO)

 Time Transfer by Laser Link
(T2L2, Chomptt, LRO, Hayabusa…)

 Satellite – OGS LaserCom
(SOTA, OPALS, OSIRIS, NorSatTD…) 

 QuantumCom demonstration

 Imaging / Astrometry 
(Adaptive Optics, Intensity Interferometry)

 T/F transfer by Fiber network
(T-Refimeve European fiber network)

Grasse station ILRS7845 - Sciences

o Ritchey Chretien Telescope: 1.54 m
o Alt-Az mount, speed = 5°/s, absolute accuracy < 3 arcsec rms

Altitude = 1273 m, 
Grasse – France SLR & LLR station

© ILRS
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SLR Trends : High rate (up to 100 kHz – MHz), Two color technique

Smaller detector (25 – 80 µm APD or 50 µm SNSPD…) 

Grasse station – 1.5m F20 Telescope
 Limited Field of View (FoV ~ 5 – 15 arcsec) on small-size detector 

when satellite is not visible…
 Difficulties to find the satellite

 Large error pointing

Discontinuities in the ranging data…

Errors in timing detection…

Difficult to activate 
‘autonomous operation’ 

Solution: 
illuminate the satellite (by high-power laser) and using fine-tracking (TipTilt mirror) 
in order to maintain the returning signal from satellite in the center of detector.   

Needs: good pointing and fine-tracking of the telescope during satellite pass.
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Coarse-tracking (1.5m telescope controller) and Fine-tracking (TipTilt mirror + Camera) 

TipTilt Mirror + Camera

Test bench (Detectors…)

On Nasmyth testing

M1

M2
M3

M4’ M4’

Wide FoV Cam

Auto-tracking 
Fine-tracking discharges its correction 
by Coarse-tracking when the corrections 
approach the TipTilt saturation limit. 
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Coarse-tracking (1.5m telescope controller) and Fine-tracking (TipTilt mirror + Camera) 

TT Cam FoV = 50”

94.3% 
[-1, 1] 

98.2% 
[-2, 2]
arcsec 

Histogram
Orbit: 956x1006 km

TipTilt Mirror + Camera

Test bench (Detectors…)

Debris – Cosmos2218RB
Culmination = 69 deg

TT Saturation  discharged by Coarse tracking

Coarse Tracking by Telescope controller 10 Hz

Fine tracking by TipTilt Mirror (TT) + Camera --- 10 – 400 Hz

Prediction error ~ 100 arcsec
Under strong turbulence 
(wind velocity = 40 km/h) 

SAT illuminated (SUN)

Spot position is stabilized with RMS = 0.5 arcsec
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When satellite is not illuminated (by the SUN), we use a high-power (30W), continuous laser 1064 nm
Full Divergence = 100 – 200 µrad

High power cw laser (30W)

 195 mm telescope
o Aperture: 195 mm, F/9
o Material: Carbon
o Lens: Apochromatic
o Limited Diffraction

 1064 nm laser ML30-CW
o Power: 3 – 30 W
o Output: Monomode fiber
o FWHM: < 3 nm
o Beam quality: M² < 1.1

 Tuning
o Optical Power (Software)
o Divergence (20 – 200 µrad)
o Orientation (manual)

High-speed IR Camera

 FirstLight C-RED 2
o Resolution: 640×512 pixel² 
o Pixel size: 15 µm
o Quantization: 14 bits
o Frame rate: 400 Hz
o Noise: 30e- at 400 fps

TipTilt Mirror - Motorized 

 PI S-330.8SL + E.505/E.509
o Dynamic Range: 10 mrad

 50 arcsec Correction
o Jitter: <0.2 µrad, 1.5 kHz
o Mirror Diameter: 25 mmLaser

1064

Wide FoV Cam

2. Architecture of experiment – Fine-Tracking

Lageos2 – Laser OFF Lageos2 – Laser ON

CW laser emitter
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Link budget -- high-power (30 W), continuous laser 1064 nm

2. Architecture of experiment – Link budget

Parameter unit Stella Ajisai Lageos Etalon

�� 30 � 30 30 30 30

�� 0.75 �. �� 0.75 0.75 0.75

�� 0.86 �. �� 0.86 0.86 0.86
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Spot size in the tracking cam: 
5×5 pixels (0.32”/pixel)

Camera noise of 30e-/pixel,
we need at least 100 pe/pixel
in order to achieve a good
spot movement measurement
for auto tracking process.

Link budget estimation OK

Lageos: 60 deg Elevation 
by TipTilt Mirror + Camera --- 10 – 400 Hz

At 10 Hz, we expect to have:
400 pe/pixel  good SNR
 activate fine-tracking

Laser 1064 nm - ON Lageos2
~400pe/pixel

Diffusion issue…

Image Filtering

Lageos2 - filteredLageos2 – raw 

Div = 20 arcsec  ≈ 100 µrad

Stella Ajisai
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Image Filter – SNR optimization on centroid detection – Lageos (limited link budget)

 hot & dead pixels  Diffusion…(size and position change following telescope elevation) 

3. Filter & centroid detection – SNR optimization 

 offset noise

Spot detection???

hot & dead pixels …

33 deg 47 deg 65 deg

75 deg85 deg

64 deg 50 deg 35 deg
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Image Filter – SNR optimization on centroid detection

 Cooling (noise ↘) + Dark suppression (offset + uniformity ↘),  

 + Correction map FirstLight CRED-2 Camera (hot & dead pixels 0.28% correction) --- Camera Build-in Tools 

3. Filter & centroid detection – for Lageos fine tracking

 Box blur or low-pass filter (Diffusion Suppression)

Built-in Correction 

 Median filter (filter hot pixels), on 3×3 or 5×5 pixels  

Kernel size = 7×7 (larger than spot size)
Aim to recalculate the Pseudo Dark 

After suppression of Pseudo Dark
Raw Pseudo-Dark Corrected
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After optimize the spot detection by using some filters, 
we can activate the fine-tracking on Lageos illuminated 
by the high power laser. 

Laser OFF Laser ON Laser ON - filtered

Fine-tracking activatedLageos2 Lageos2

TestTest TestCloudy

Fine tracking activated from 39 deg – 75 deg Elevation

0.6 arcsec RMS

Centroid histogram

With Image Filter + optimization on centroid detection

Auto- Fine tracking on Lageos can be activated 
from elv > 39 deg under strong turbulence condition

(seeing > 2 arcsec)

Spot motion RMS = 0.6 arcsec (spot size ~2 arcsec FWHM)
during 20 minutes  (~ 50 % of Lageos tracking time)

4. Preliminary results – Lageos fine tracking

TipTilt correction
~21 arcsec on X – axis
~18 arcsec on Y – axis

15 arcsec

4 mins

0.6 arcsec RMS

Telescope Jitter
Telescope error pointing
Prediction error
Aberration velocity

Fine-tracking 
activated
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 Integration the Fine-Tracking (TipTilt mirror) into actual SLR schema

 SLR measurement test with fine tracking  Estimate the improvement on SLR performance
(Sat illuminated by the SUN or by a high-power laser)

5. Conclusion & Prospective applications 

 Image SNR optimization process (adapting blurs size) can be applied for other camera to filter diffusions from 
cloud/dome/telescope during daylight. It can improve 1 or 2 star-magnitude on star detection (day-light).

 Latency from Imaging filter  Applying physical filter… instead of Blurs box (numerical) filter.
Ultra high-pass Fourier filtering – small pin-block in ‘4-f’ spatial filtering system 

Am. J. Phys. 69 (5), May2001

Simulation for our case… 120 µm pinblock

To be continued…

 Preliminary results on satellite illumination with Imaging Filter – SNR optimization
Ajisai, Stella ---- OK during daylight, Lageos ---- OK during night-time. 

Lageos during daylight  to be optimized… (1550 nm + filter)

 Satellite velocity (6 – 10 arcsec) may be modeled and corrected by TipTilt mirror
also the misalignment between transmitter & receiver to increase the link budget

 better SNR to activate fine tracking and higher signal for detection
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The most significant obstacle: optical power losses during a long-distance ground to space transmission 
1 W transmitted  receive ∼nW (-60dBm) with high-speed photodiode… 

 Fiber coupling & amplification may be inevitable!

5. Conclusion & Prospective applications 

Dix-Matthews, B.P., Schediwy, S.W., Gozzard, D.R. et al. Methods for coherent 
optical Doppler orbitography. https://doi.org/10.1007/s00190-020-01380-w

Atmospheric phase-noise (imprinted on Doppler measurement, ��) 
can be suppressed using the predicted Doppler shift, �̂�.

���� = 2Δ��� + 2Δ�̇��� + (�� − �̂�)

The stabilized Doppler measurement may be obtained from this component of ����

Modulation & Detection of high-power laser

First-step for ‘Methods for coherent optical Doppler orbitography’

[Dix-Matthews 2020]

 Experiment with our 1550 nm 42 dBm (15W) amplifier (MHz - GHz modulation) for the transmitter and 
measure the returning signal (fiber coupling & amplified  detection). 

Promising performance on 2.2 km free-space: 
estimated range rate precision of 9.0 nm/s at 1 s of integration, 
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Thank you for your attention!




